
www.manaraa.com

Sender�Based Message Logging

David B� Johnson
Willy Zwaenepoel

Department of Computer Science

Rice University

Houston� Texas

Abstract

Sender�based message logging is a new low�overhead mech�
anism for providing transparent fault�tolerance in dis�
tributed systems� It di�ers from conventional message log�
ging mechanisms in that each message is logged in volatile

memory on the machine from which the message is sent�
Keeping the message log in the sender�s local memory
allows us to recover from a single failure at a time with�
out the expense of synchronously logging each message to
stable storage� The message log is then asynchronously
written to stable storage� without delaying the computa�
tion� as part of the sender�s periodic checkpoint� Maintain�
ing the sender�based message log requires at most one ex�
tra network packet over non�fault�tolerant reliable message
communication and imposes little additional synchroniza�
tion delay� It can be applied transparently to existing
distributed applications and does not require specialized
hardware� It is currently being implemented on a network
of SUN workstations�

� Introduction

Sender�based message logging is a new low�overhead mech�
anism for providing fault tolerance in distributed systems�
It can be applied transparently to existing applications and
does not require the use of specialized hardware� It sup�
ports the recovery of processes executing in a distributed
system from a single concurrent failure in the system at
any time �i�e�� no process can fail while another process has
failed or is recovering�� We are using sender�based message
logging to add fault tolerance to compute�intensive ap�
plications executing in parallel on a collection of diskless
workstations connected by a local area network�

In a network of personal workstations� individual ma�
chines often become unavailable from hardware failure or
from the workstation owner reclaiming his machine� It is
this type of failure from which we wish to recover� We do

This research was supported in part by the National Science

Foundation under grant DCR�������� and by an IBM Faculty

Development Award�

not currently support recovery from more complicated fail�
ure modes such as multiple concurrent failures or network
partitioning� but instead concentrate on this situation of
a single failure at a time� Also� we do not address in this
paper the issues of maintaining the consistency and avail�
ability of static data such as �le systems and databases �	

or the constraints of real�time applications ��� �
�

Sender�based message logging di�ers from other types of
message logging mechanisms �� �� ��
 in that the messages
are logged in the local volatile memory on the machine
from which each is sent� as illustrated in Figure �� Keeping
the message log in the sender�s local memory allows us to
recover from a single failure at a time without the expense
of synchronously logging each message to a special logging
or backup process or to stable storage� and without hav�
ing to roll back any processes other than the failed one to
achieve a consistent state following recovery� The message
log is then asynchronously written to stable storage as part
of the sender�s periodic checkpoint� This allows the stable
storage logging to proceed independently of computation�
much the same as in Strom and Yemini�s optimistic re�
covery protocol ���
� The sender�based message logging
protocols accomplish this volatile logging with a minimum
of overhead� They require at most one extra message over
non�fault�tolerant reliable message communication and im�
pose little additional synchronization delay� This tech�
nique also distributes message logging overhead propor�
tionally over all processes sending messages and avoids the
single point of failure possible with a centralized logging
facility�

This paper describes the design and operation of the
sender�based message logging mechanism� In Section �
the model of a distributed system assumed by sender�based
message logging is described� An overview of the design
and the motivation behind it is presented in Section ��

Sender Receiver

message log
messages

Figure �� Process and message log con�guration

www.manaraa.com

and Section � describes the data structures necessary for
its realization� Section 	 provides a detailed description
of the message logging and failure recovery protocols used
in sender�based message logging� and an informal argu�
ment of their correctness� This section also discusses an
�optimistic� version of the logging protocol that is cur�
rently under development� Related work is covered in
Section �� and conclusions and avenues for further work
are presented in Section ��

� Distributed System Model

Sender�based message logging is designed to work with ex�
isting distributed systems without the addition of special�
ized hardware to the system or specialized code to appli�
cations� We make the following assumptions about the
hardware and the applications�

� The system is composed of a network of fail�stop pro�
cessors ��
�

� Packet delivery on the network is not guaranteed� but
reliable delivery can be implemented by retransmit�
ting the packet a limited number of times and waiting
for an acknowledgement from the destination� If no
acknowledgement is received� the destination host is
assumed to have failed�

� The network supports broadcast communication� All
processors can be reached by a broadcast through a
limited number of retransmissions of the packet�

� A network�wide stable storage service is always acces�
sible to all processors in the system�

� Processes communicate with each other only through
messages�

� All processes in the system are deterministic in the
sense that� if two processes start in the same state�
and both receive the identical sequence of inputs� they
will produce the identical sequence outputs and will
�nish in the same state� The state of a process is thus
completely determined by its starting state and by the
sequence of messages it has received�

� Design and Motivation

In sender�based message logging� each message transmit�
ted is stored in the volatile memory of the machine from
which it was sent� Additionally� each process is occasion�
ally checkpointed to stable storage� but there is no coor�
dination between the checkpoints of individual processes�
When a process receives a message� it returns to the sender
a receive sequence number� or RSN� which is then added
to the log with the message� The return of the RSN may
be merged with any acknowledgement required by the ex�
isting network protocol� This RSN indicates the order in
which that message was received relative to other messages
sent to the same process from other senders� This ordering
information� which is not normally available to the sender�

is required for successful recovery since the messages must
be replayed from the log in the same order as they were
received before the failure� Recovery of a failed process is
done by restarting the failed process from its checkpoint
and replaying the messages from the logs at the senders in
ascending order by RSN�

Figure shows an example of a distributed log result�
ing from this protocol� In this example� process Y initially
had an RSN value of �� Y �rst received two messages from
process X�� then two messages from process X�� and �nally
another message from X�� For each message received� Y
incremented its current RSN and returned this new value
to the sender� As the correct sender got the RSN from Y �
it added it to its local log along with the message� After
receiving these �ve messages� the current value of the RSN
for Y is ���

This design is motivated by the desire to minimize the
overhead on the system imposed by the provision of fault
tolerance� In general� there are three components to this
overhead� message logging� checkpointing� and failure re�
covery� We concentrate here on minimizing the overhead
of message logging� Since each message in the system must
be logged� this overhead places a continuous burden on the
system even when no faults occur� The checkpointing fre�
quency can be tuned to balance its expense against the
time needed for recovery or the space needed to store the
log of messages received since the last checkpoint� Also�
the overhead of failure recovery should be less important
than that of message logging if failures are infrequent�

The method used for logging messages here is derived
from a simple analysis of the minimum�cost method of
doing the required logging� When one process sends a
message to another� both the sender and the receiver nat�
urally get �or already have� a copy of the message� Rather
than synchronously sending a copy of it elsewhere for log�
ging� it is faster to simply save a copy in local memory
on either the sending or the receiving machine� Since the
purpose of the logging is to recover the receiver if it fails�
the receiver can not do this� however� the sending machine
can easily save a copy of each message sent� Keeping the
message log in the sender�s local memory also distributes
the logging overhead proportionally over all processes that
send messages and avoids the possible single point of fail�

X�

X�

Y

�� �� ��

�� ��

RSN� ��

Figure �� An example message log for
sender�based message logging

www.manaraa.com

ure of a centralized log� It is this idea that forms the basis
of the sender�based message logging mechanism�

� Data Structures

The inclusion of sender�based message logging in a dis�
tributed system requires the maintenance of the following
items of system data for each participating process�

� A send sequence number or SSN � a sequence num�
ber of messages sent by the process� This is used
for duplicate message suppression during recovery�
Distributed systems that do not provide fault toler�
ance typically already require such a sequence num�
ber for suppression of duplicate messages� When this
sequence number is included in the checkpoint of a
process� it can be used to suppress duplicates caused
by process recovery as well�

� A receive sequence number or RSN � a sequence num�
ber of messages received by the process� The RSN is
incremented each time a new message is received� and
the value after being incremented is assigned as the
RSN for this message and is returned to the sender�

� A message log of messages sent by the process� This
must contain the entire message that was sent in�
cluding the data� the identi�cation of the destination
process� and the SSN used for that message� When
the RSN for a message is returned by the receiver� it is
also added to the log� After a process is checkpointed�
all messages sent to that process and received before
the checkpoint can be removed from the logs in the
sending processes�

� A table recording the highest SSN value received in a
message sent by each process with which this process
has communicated� This is used for duplicate message
detection�

� A table maintaining the RSN value that was returned
for each message received since the last checkpoint
of this process� This table is indexed by the SSN of
the message and may be purged when the process is
checkpointed�

Each of these data items except the last must be included
when the process is checkpointed� When a process is
restarted from its checkpoint� their values will be restored
along with the rest of the checkpointed data�

� The Protocols

The act of logging a message under sender�based message
logging is not atomic� since the message data is entered
into the log when it is sent but the RSN can only be en�
tered after it has been received by the target process� It is
thus possible for the receiver to fail while some messages
do not yet have their RSNs recorded at the sender� such
messages are called partially logged messages� The sender�
based message logging protocols are designed so that any

partially logged messages that exist for a failed process can
be sent to it in any order after the sequence of fully logged
messages have been sent to it in ascending RSN order�

��� Message Logging Protocol

With the sender�based message logging protocol� the fol�
lowing steps are required to send a messageM from process
X to process Y �

�� Process X sends the message M to process Y and
inserts the message in its local volatile message log�

� Process Y returns an acknowledgement to X and in�
cludes with this acknowledgement the RSN value it
assigned to M �

�� Process X adds the RSN for this message to its log
and sends an acknowledgement for the RSN back to Y �

The operation of this protocol in the absence of transmis�
sion errors is illustrated in Figure ��

If either the message acknowledgement and RSN packet
or the RSN acknowledgement packet is not received within
some time� the preceding packet is retransmitted� If no re�
sponse is received after some maximum number of such re�
transmissions� the destination machine is assumed to have
failed� After returning the RSN� the receiver can continue
execution without waiting for the RSN acknowledgement�
but it must not send any messages �including input or
output with the �outside world�� until the RSNs of all
messages that it has received have been acknowledged�
The sender may continue normal execution immediately
after the message is sent� but it must continue to retrans�
mit the original message until the RSN packet arrives�

In comparison to the typical protocols used for reliable
message delivery without fault tolerance� this protocol re�
quires one extra network packet� used to acknowledge the
RSN� The sender does not experience any extra delay� but
does incur the overhead of copying the message and the
RSN to the log� The receiver may or may not experi�
ence some delay depending on whether it needs to send
messages immediately after receipt of the original message�

X

Y

time

message

ack�RSN

ack

Any new sends by Receiver

must be delayed�

Figure �� Operation of the message logging
protocol in the absence of transmission errors

www.manaraa.com

��� Failure Recovery Protocol

To recover a failed process� it is �rst restarted on some
available processor from its most recent checkpoint� All
fully logged messages for this process are then resent to it
in ascending order of their logged RSNs� Only messages
for which both the message data and the RSN have been
recorded in the log are resent at this time� any partially
logged messages are then sent to the process in any or�
der after this� There is a separate message log stored at
each process that sent messages to the failed process since
its last checkpoint� The recovering process broadcasts re�
quests for its logged messages� which are then replayed to it
in ascending RSN order� beginning with the next message
following the current RSN recorded in the checkpoint�

As the recovering process executes from its checkpointed
state� it resends any messages that it sent after the check�
point before the failure� Since the next SSN to use in
sending messages is included in the process checkpoint�
the SSNs used during recovery are the same as those used
when these messages were originally sent before the failure�
When receiving a message� If its SSN is less than or equal
to the the highest SSN already received from this sender�
the message is rejected as a duplicate� If the receiver has
not checkpointed since originally receiving this message�
it returns an acknowledgement including the RSN that it
assigned when it �rst received this message� This RSN
value is retrieved from its table recording the correspon�
dence between the SSN of each message received and the
RSN value assigned to that message� However� if the re�
ceiving process has been checkpointed since this message
was �rst received� this table entry will have been purged�
and an indication that this message need not be logged at
the sender is returned instead�

��� Correctness

We show that in the case of a single failure at a time�
this mechanism will correctly restore the state of the
failed process to be consistent with the states of the other
processes in the system�

First� during recovery� the process restored from its
checkpointed state� and the sequence of fully logged
messages are replayed to it in the same order as they were
received before the failure �in ascending RSN order�� be�
ginning following the checkpointed RSN value� By the as�
sumption of a single concurrent failure� these messages are
all available in the volatile logs� and thus� by the assump�
tion of determinism� the process reaches the same state as
it had after receipt of these messages before the failure�

Next� the partially logged messages are replayed to the
process in any order� Since processes are restricted from
sending new messages until all messages they have received
are fully logged� no processes other than the receiver can
be a�ected by the receipt of a message that is still only
partially logged� Thus� any change in the order of receipt
of the partially logged messages during recovery can also
only a�ect the state of the receiver and can not alter its
consistency with other processes in the system�

While a process is recovering� it will resend the same
messages that it sent after the checkpoint before the fail�
ure� Since the next SSN to use in sending messages is
part of the checkpoint� these duplicates will be correctly
detected and rejected by their receivers�

The data structures necessary for further participation
in the protocol �Section �� are correctly restored since they
are recovered from the checkpoint and then modi�ed as
a result of receiving the same sequence of messages� In
particular� the volatile message log in the failed process
is recreated such that it may be used in the recovery of
some other process after the current recovery is completed�
Normally� the original RSN is returned in response to the
duplicate message and is added to the log� However� if the
receiver has checkpointed since this message was originally
received� this message can not be needed for any future
recovery of the receiver� In this case� an indication that
the message is not needed is returned instead� the partially
logged message is removed from the volatile log� and no
RSN is recorded� In either case� correct further operation
of the protocol is assured�

Finally� this mechanism avoids the problem of the
domino e�ect ���� ��
 since no processes other than the
failed one need to be rolled back to recover from a failure�

��� An Optimistic Alternative

This protocol is an alternative to the basic message log�
ging protocol of Section 	�� that allows the receiver to
send new messages to other processes without waiting for
all messages it has received to be fully logged at their
senders� This is an optimistic protocol in that it makes
the optimistic assumption that the logging will eventu�
ally be completed �through retransmissions if necessary�
before a failure occurs and maintains enough extra in�
formation to be able to roll back the system and to re�
cover a consistent state if the assumption turns out to be
wrong� Although this protocol is still under development�
this section presents an initial overview of its design�

Using this optimistic protocol� it is now possible for a
process to enter a state that is not consistent with the
system state that may be created from recovery after a
failure� For example� the scenario shown in Figure � is now
possible� Here� process X has received a message M and
then sent a message N to process Y � Process X then failed
before the RSN for message M had been added to the log
at its sender� During recovery� we cannot guarantee that
message M is resent in the same order as it was received
before the failure� Thus� process X potentially can not
recreate the state from which message N was sent� and
process Y may then exist in a state that is not consistent
with the state recreated for process X after its recovery�

We introduce the following terminology to describe this
situation� The state of a process is unrecoverable until all
messages it has received are fully logged at their senders�
If a process fails in an unrecoverable state� its state is lost �
otherwise� its state may again become recoverable if all
messages it has received are eventually fully logged by the
return of their RSNs� When one process receives a message

www.manaraa.com

X

Y

time

M

N

RSNN

failure

Y becomes an orphan

Figure �� A possible scenario when using the
optimistic logging protocol

from another� the state of the receiver depends on the state
of the sender at the time the message was sent because any
part of the sender�s state might have been included in the
message� If a process depends on a state that becomes
lost� the process becomes an orphan process and the state
of the process is then an orphan state�

In short� an orphan process Y is a process that has
received a message N from a failed process X that sent
message N after receiving a message M that was not fully
logged at the time of X�s failure �Figure ��� If the cur�
rent RSN of a process is included in all messages sent by
the process� and if each process maintains a table of the
highest RSN it has received from any process� process Y
has become an orphan from the failure of process X� if the
value for X in its RSN table is higher than the RSN to
which X was able to recover from the sequence of fully
logged messages� To determine whether its failure has
caused other processes to become orphaned� X broadcasts
the value of the RSN to which it was able to recover� Any
process that has a higher RSN value for X recorded in
its table of highest RSN values received concludes that it
has become an orphan� In addition to being invoked af�
ter a process failure� this orphan�detection algorithm must
also be used before a process is checkpointed� since if the
process does become an orphan� a checkpoint from before
the state was orphaned will be needed for recovery�

After recovering the state of a process� the states of any
orphaned processes are recovered by forcing them to fail
one at a time and recovering them from their checkpoints
and message logs in the same manner as is used for nor�
mal failed processes� Some of the messages logged for an
orphaned process may have been recorded in the memory
of the failed process� but this log information will be re�
constructed during the recovery of that process� After the
failed process and all orphans are recovered� their states
will be consistent as of the time that the last fully logged
message was received before the failure�

This form of the logging protocol has a number of ad�
vantages in addition to the added concurrency of allowing
the receiver to proceed asynchronously from the receipt of
the RSN acknowledgement� For instance� the sender could
delay sending the acknowledgement of the RSN packet for
a substantial period of time and piggyback it on the next
message it needs to send to the receiving process� with a

timeout mechanism if no such message is present� This
would reduce the number of network packets to the same
number as for reliable delivery in a system without fault
tolerance� Extending this further� if processes use a remote
procedure call protocol to communicate� there often is no
explicit acknowledgement packet since the return from the
RPC call implicitly acknowledges the call ��
� In this case�
the RSN can be piggybacked on the RPC return packet
and the RSN acknowledgement can be piggybacked on the
next call packet� again without any additional network
packets for the provision of fault tolerance� even with this
highly optimized protocol�

� Related Work

A number of fault�tolerance systems require applications
to be written according to speci�c computational models
to simplify the provision of fault tolerance� For example�
the ARGUS system ��
 requires applications to be struc�
tured as a �possibly nested� set of atomic actions on ab�
stract data types� Since sender�based message logging is
a transparent mechanism� it does not impose such restric�
tions on the applications�

The Auros distributed operating system �
 and the
PUBLISHING mechanism ��
 both use message logging
but require specialized hardware to assist with the log�
ging� Auros uses special networking hardware that atom�
ically sends each message also to backup processes for the
sender and the receiver� PUBLISHING uses a centralized
logging machine that must reliably receive every network
packet� Since sender�based message logging requires no
such specialized hardware� it can be used over a broader
class of existing systems without loss of e�ciency�

Strom and Yemini�s optimistic recovery mechanism uses
an optimistic asynchronous message logging protocol that
does not delay the sender or the receiver for synchroniza�
tion with stable storage logging ���
� Causal dependency

tracking and process rollback are used to recreate a consis�
tent system state after a failure� The presence of a volatile
log in sender�based message logging allows us to recover
from a single failure at a time without rollback� while still
maintaining the asynchrony between computation and sta�
ble storage logging� Furthermore� their desire to recover
from more than a single concurrent failure leads to proto�
cols that are signi�cantly more complicated than sender�
based message logging�

� Conclusion

The sender�based message logging mechanism o�ers a sim�
ple� low�overhead solution to providing fault tolerance in
distributed systems� Keeping a volatile log allows us to re�
cover from a single failure at a time without rollback� and
avoids the expense of synchronously logging each message
to stable storage� Organizing the volatile log by sender
results in an e�cient logging protocol� with minimal extra
network communication and synchronization delay� This

www.manaraa.com

results in an e�cient fault�tolerance protocol that works
naturally within the constraints of a distributed system�
No special knowledge of fault tolerance is required by pro�
grams or programmers to use sender�based message log�
ging� Since it does not rely on any specialized hardware to
achieve fault tolerance� sender�based message logging can
be added easily to existing distributed systems� as well as
being designed into new systems�

We are currently implementing a prototype of sender�
based message logging under the V�System ��� �
 on a col�
lection of SUN workstations connected by an Ethernet
network� Although the V�System di�ers slightly from the
distributed system model assumed in this work� we believe
that this can be satisfactorily handled in the implementa�
tion� We are also continuing development of the optimistic
logging protocol discussed in Section 	��� Finally� we are
considering the extension of sender�based message logging
with causal dependency tracking similar to that used in
Strom and Yemini�s optimistic recovery protocol ���
 to
allow for recovery from multiple concurrent failures� The
presence of the volatile log in the sender should greatly re�
duce the occurrence of orphaned processes� thus reducing
the need to roll back processes other than those that have
failed�

Acknowledgements

We would like to thank Ken Birman� David Cheriton�
Elaine Hill� Ed Lazowska� and Rick Schlichting for their
comments on earlier drafts of this paper� We would also
like to thank the referees for their help in improving the
clarity of the presentation�

References

��
 Andrew D� Birrell and Bruce Jay Nelson� Implement�
ing remote procedure calls� ACM Transactions on

Computer Systems� �������	�� February �����

�
 Anita Borg� Jim Baumbach� and Sam Glazer� A
message system supporting fault tolerance� In Pro�

ceedings of the Ninth ACM Symposium on Operating

Systems Principles� pages ������ ACM� October �����

��
 David R� Cheriton� The V kernel� a software base
for distributed systems� IEEE Software� ���������
April �����

��
 David R� Cheriton and Willy Zwaenepoel� The dis�
tributed V kernel and its performance for diskless
workstations� In Proceedings of the Ninth ACM Sym�

posium on Operating Systems Principles� pages ���
���� ACM� October �����

�	
 J� N� Gray� Notes on database operating systems�
In R� Bayer� R� M� Graham� and G� Seegm�uller� edi�
tors� Operating Systems� An Advanced Course� chap�
ter �� F�� pages �������� Springer�Verlag� New York�
�����

��
 H� Hecht� Fault�tolerant software for real�time ap�
plications� ACM Computing Surveys� �������������
December �����

��
 H� Kopetz� Resilient real�time systems� In T� Ander�
son� editor� Resilient Computing Systems� chapter 	�
pages ������� Collins� London� ���	�

��
 Barbara Liskov and Robert Schei�er� Guardians and
actions� linguistic support for robust� distributed pro�
grams� ACM Transactions on Programming Lan�

guages and Systems� 	������������ July �����

��
 Michael L� Powell and David L� Presotto� PUB�
LISHING� a reliable broadcast communication mech�
anism� In Proceedings of the Ninth ACM Sympo�

sium on Operating Systems Principles� pages ��������
ACM� October �����

���
 Brian Randell� System structure for software fault
tolerance� IEEE Transactions on Software Engineer�

ing� se��������� June ���	�

���
 David L� Russell� State restoration in systems of com�
municating processes� IEEE Transactions on Soft�

ware Engineering� se������������� March �����

��
 Richard D� Schlichting and Fred B� Schneider� Fail�
stop processors� an approach to designing fault�
tolerant distributed computing systems� ACM Trans�

actions on Computer Systems� ��������� August
�����

���
 Robert E� Strom and Shaula Yemini� Optimistic re�
covery in distributed systems� ACM Transactions on

Computer Systems� ���������� August ���	�

